A microRNA (mmu-miR-124) prevents Sox9 expression in developing mouse ovarian cells.

نویسندگان

  • Francisca M Real
  • Ryohei Sekido
  • Darío G Lupiáñez
  • Robin Lovell-Badge
  • Rafael Jiménez
  • Miguel Burgos
چکیده

In mammals, sex differentiation depends on gonad development, which is controlled by two groups of sex-determining genes that promote one gonadal sex and antagonize the opposite one. SOX9 plays a key role during testis development in all studied vertebrates, whereas it is kept inactive in the XX gonad at the critical time of sex determination, otherwise, ovary-to-testis gonadal sex reversal occurs. However, molecular mechanisms underlying repression of Sox9 at the beginning of ovarian development, as well as other important aspects of gonad organogenesis, remain largely unknown. Because there is indirect evidence that micro-RNAs (miRNA) are necessary for testicular function, the possible involvement of miRNAs in mammalian sex determination deserved further research. Using microarray technology, we have identified 22 miRNAs showing sex-specific expression in the developing gonads during the critical period of sex determination. Bioinformatics analyses led to the identification of miR-124 as the candidate gene for ovarian development. We knocked down or overexpressed miR-124 in primary gonadal cell cultures and observed that miR-124 is sufficient to induce the repression of both SOX9 translation and transcription in ovarian cells. Our results provide the first evidence of the involvement of a miRNA in the regulation of the gene controlling gonad development and sex determination. The miRNA microarray data reported here will help promote further research in this field, to unravel the role of other miRNAs in the genetic control of mammalian sex determination.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Baicalin modulates microRNA expression in UVB irradiated mouse skin

This study aimed to evaluate the effects of baicalin on ultraviolet radiation B (UVB)-mediated microRNA (miRNA) expression in mouse skin. We determined miRNA expression profiles in UVB irradiated mice, baicalin treated irradiated mice, and untreated mice, and conducted TargetScan and Gene Ontology analyses to predict miRNA targets. Three miRNAs (mmu-miR-125a-5p, mmu-miR-146a, and mmu-miR-141) w...

متن کامل

P-199: Effect of Oxidative Stress on Sperm Quality and Mmu-miR-34a Expression in Testis of Mature Mouse

Background: Male infertility is responsible for approximately 50% of infertility in the world. Reactive oxygen species (ROS) is one of the causative agents of infertility in males which effects on sperm quality and function. In this study, the effects of oxidative stress induced by tertiary-butyl hydroperoxide (TBHP) were investigated on sperm quality, testis tissue and miRNAs expression. Mater...

متن کامل

Study of the effect of miR‑124 and the SOX9 target gene in Hirschsprung's disease.

Hirschsprung's disease (HSCR) is a polygenic disease, of which the cause remains to be elucidated. It has been suggested that SRY-related HMG-box 9 (SOX9) is fundamental for the correct development of oligodendrocytes and astrocytes; however, not the development of neurons. There are currently no reports regarding SOX9 expression in patients with HSCR; therefore, the present study aimed to inve...

متن کامل

The miR-124-Sox9 paramutation: RNA-mediated epigenetic control of embryonic and adult growth.

The size of the mammalian body is determined by genetic and environmental factors differentially modulating pre- and postnatal growth. We now report a control of growth acting in the mouse from the first cleavages to the postnatal stages. It was evidenced by a hereditary epigenetic modification (paramutation) created by injection of a miR-124 microRNA into fertilized eggs. From the blastocyst t...

متن کامل

Maternal Low-Protein Diet Modulates Glucose Metabolism and Hepatic MicroRNAs Expression in the Early Life of Offspring †

Emerging studies revealed that maternal protein restriction was associated with increased risk of type 2 diabetes mellitus in adulthood. However, the mechanisms of its effects on offspring, especially during early life of offspring, are poorly understood. Here, it is hypothesized that impaired metabolic health in offspring from maternal low-protein diet (LPD) is associated with perturbed miRNAs...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biology of reproduction

دوره 89 4  شماره 

صفحات  -

تاریخ انتشار 2013